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optimal

The authors propose a new method fl)r generation (by grinding or cutting) of a surface (v) with the optimal

approximation to the theoretical (ideal) surface (Sp). The method is based on the following ideas: (1) A region of

space is swept out by the tool surface v performing certain motions with respect to vp. The surface of the tool (as

grinding wheel or cutter) is a surface of rew_lution with a circular arc in axial section, and a circular cone in

particular cases. (2) The space swept out by _, is considered as a family of surfaces _, and the envelope to this

family is surface _"_ (generated surface) that must be in optimal approximation to the theoretical surface _,,. (3) The

continuous varied setting and orientation of v with respect to vp are executed by a multi-degree-of-freedom

machine, that is a computer numerical controlled (CNC) machine. The approach developed can be applied for

grinding of face-gears, helical inw)lute gears with modified topology, ruled undeveloped surfaces and others. An

example of application is considered

I. Introduction

The development of multi-degree-of-freedom machines, numerically controlled by computer (CNC)

machines, has opened new perspectives for the generation of surfaces with new topology, and the

generation of a surface (Xg) that must be optimal approximation to the theoretical (ideal) surface (re).

The authors propose a method for generation of _g (with optimal approximation to re) based on the
following ideas:

(1) A mean line L m on the ideal surface Xp is chosen as shown in Fig. 1.
(2) The tool surface 2_',is a properly designed surface of revolution (in particular cases _, is a circular

cone as shown in Fig. 1) that moves along L m. Surfaces ._', and _p are in continuous tangency along
L,,; M is the current point of tangency (Fig. 1). The orientation of )_.'_ with respect to ),'p

(determined with angle /3) is continuously varying. Angle /3 at the current point M of tangency is

formed by the tangents t, and t h to L m and the tool generatrix, respectively (Fig. 1). Tangents t_

and t h form a plane I! that is tangent to X, and vp at point M.

('orrespondence to: Professor F.L. Litvin, UIC The University of Illinois at Chicago, Department of Mechanical Engineering

(M/(7 251), 21139 Engineering Research Facility (ERF), Chicago, IL 6(1680, USA.
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Fig. 1. Installment and orientation of tool surface 2,
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with respect to ideal surface ?"p.

(3) The tool surface Jf_ in its motion with respect to _v swept out a region of space as a family of
surfaces _,. The envelope to the family of Z', is the surface ._'_ (the ground, cut surface) that is in

tangency with the theoretical surface _vv at any point M of L,,, and must be in optimal

approximation to ,_p in any direction that differs from L,,,.

(4) The optimal approximation of 2f_ to Zp is obtained by variation of angle /3 (Fig. 1).

(5) The continuous tangency of tool surface _ with P.iv and properly varied orientation of "_t can be
obtained by the execution of required motions of the tool by a computer controlled multi-degree-

of-freedom machine. One of these degrees of freedom, rotation of the tool about its axis, provides

the desired velocity of grinding (cutting) and is not related to the process for generation of 27.
The paper covers the following topics:

(1) Determination of the equation of meshing between the tool surface _', and the generated surface

2'8. The term "equation of meshing' is used in the theory of gearing [1] and is represented as

f(u_, 0,, 0p) = 0 where (u t, 0,) are the Gaussian coordinates of v, and 0p is the generalized parameter
of motion. The equation of meshing provides the necessary condition of existence of the envelope
to the family of surfaces.

(2) Determination of the generated surface ).'g as the envelope to the family of surfaces 2', swept out by

the tool. Surface 2_g coincides with the theoretical (ideal) surface _Y, along the mean line L m and
deviates from ,_p out of L m.

(3) Determination of deviations of 2g from 2fv (in regions that differ from Lm) and minimizations of _Yg

deviations for optimal approximation of 2"g to _v"

(4) Determination of curvatures of Zg that are required when the simulation of meshing and contact of
two mating surfaces are considered.

(5) Execution of required motions of _'_ with respect to 2"v by application of a multi-degree-freedom.
computer numerically controlled machine.

The authors have developed an effective approach for the derivation of the necessary condition for

the existence of the envelope 2"g using the idea of motion of the Darboux-Frenet trihedron along L m,

the chosen mean line of 2"p.
An additional effective approach has been proposed and developed for determination of curvatures

of generated surface Z'g. This approach is based on the fact that the normal curvatures and surface

torsions (geodesic torsions) of _ are: (i) equal to the normal curvatures and surface torsions of 2.'p
along Lm; and (ii) equal to the normal curvatures and surface torsions of tool surface ,.vt along the

characteristic Lg (the instantaneous line of tangency of P_.',and Z'g).
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2. Mean line on the ideal surface 2._p

The ideal surface 2.*p is considered as a regular one and is represented as

rp(tAp, 0p) _ C z Orp Orp--× so op)_E (1), ou r _ , (up, ,

where (up, 0p) are the Gaussian coordinates of X r-

The unit normal to Xp is represented as

N r _?rr Or r

n r - iSrl , N e = _ x 00_" (2)

The determination of the mean line L,,_ is based on the following procedure:

(i) Initially, we determine numerically n points on the surface Xp that will belong approximately to the

desired mean line L m.
(ii) Then, we can derive a polynomial function

up(Or) : _ a,Up"(" ') (3)
] 1

that will relate the surface parameters (u r, Or) for the n points of the mean line on 2_o.

The mean line L m, tangent Tp and unit tangent tp to the mean line are represented as follows:

¢3rp Ore dup Tp

rp(ur(Op)'Op)' To =_p + 057_,__ ' tO-ITo[ (4)

The constraint for fp is that it must be of the same sign and differ from zero at the same intervals of
interpolation.

3. Tool surface

The tool surface X, is represented in coordinate system S, rigidly connected to the tool by the

following equations:

x, =xt(u ,)cos0 t . y, =x_(u,) sin 0 t , z_ = z,(ut) , (5)

The axial section of _, obtained by taking 0, = 0 represents a circular arc. or a straight line in the case

where ).', is a circular cone.
The surface unit normal is determined as

N t Ort Ort

n,: IN,_' Nt :"_-"_'t × cgu_"' (6)

4. Equation of meshing between _, and Xg

Equation of meshing represents the necessary condition of existence of envelope Vg to the family of

surfaces Z', that is swept out by the tool surface _,.

In the theory of gearing [1], the equation of meshing can bc derived by using the equation
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N I'_, "v,l'_'=0. (7)

Here, i indicates the coordinate system where the vectors of the scalar product are represented, N _'_ is

the normal to surface Z't; and v _'_ is the relative velocity in the motion of _, with respect to v

Henceforth, we consider two basic coordinate systems, S, and S e, that are rigidly connccted to the
tool surface Z', and the ideal surface ve. In addition to Z',, wc consider two trihedrons: Sb(t b, d b, nb) and
St(t _, d_, n_). Trihedron S_, is rigidly connected to Z'_ and coordinate system S, (Fig. 2). Hcre, O b is the

point of the chosen generatrix of _', where the trihedron is located, t_, is the tangent to the generatrix at
Oh; n b is the surface unit normal of ZI, at 0 b, d b = n b x tb, and vectors t h and d_, form the tangent plane

to S, at Q,. Trihcdron 5't moves along the mean line L m (Fig. 3); t t is the tangent to the mean line L,,, at

current point M (Fig. 3); n. is the surface unit normal to Z'p at point M; d_ = n, x t_; vectors tf and d_

form the tangent plane to Z'e at point M.

The tool with surface S t and trihcdron S, moves along mean line 1.,,, of _-'p and O b coincides with
current point M of mean line L.,. Surfaces Z', and vp are in tangency at any current point M of mean

line L,,. The orientation of St, with respect to S t is determined with anglc/3 that is varied in the process
for generation.

We start the derivations with the case where Z_ is a circular cone (Fig. 4). The angular velocity to, of

rotation of S_ with respect to Sv is represented as 12, 3]"

Zt

nb

Y
Xt

Fig. _ Tool surface v

nf, i1_,

Fig. 3. Orientation of trihcdron S h with respect tl_ S t.
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zt

Fig. 4. Surface of grinding tool cone.

ds

0,_= (tt_- k,,d, + k_.,.) ¥. (S)

Here, t is the surface torsion (geodesic torsion), k,, and kg are the normal and geodesic curvatures of

surface _-'p at thc current point M of the mean line L m, ds is the infinitesimal displacement along L m.

The definition of surface torsion is given in [3]; the concept of the equivalent term 'geodesic torsion' is

also discussed in [2].

The angular velocity .Or of trihedron Sb is represented in Sr as

at3 [g_r=o0r+-d--/-nr= t -k, kg+ dsJ dt' (9)

The orientation of cone v is determined by function /3(Op) and

d_?- d0p d._, \d0,,) Irol '

where Tp is the tangent to the mean line L m at current point M.
The transformations of vector components in transition from S_ to Sb and Sf are represented by 3 x 3

matrix operators Lb, and Lfb. Here.

I-cos/3 -sin/3 (_I]Lfb = ]sin/3 cos/3 ,
L 0 0

(11)
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sinzcos0, sinzsin0, Co',/t ]Lbt = / sin 0 t --cos 0t .
L c°s Yt cos 0, cos y, sin 0t -sin 7,1

(12)

The cone surface ._', is represented in S t as follows (Fig. 4):

r t = u,[sin y_ cos 0_ sin Yt sin 0t cos yt] t , (13)

where (u,, 0,) are the surface parameters and 7, is the cone apex angle.
The unit normal to the cone surface is

n t = u,[cos _, cos 0, cos 7, sin 0, -sin 7f • (14)

The required equation of meshing (necessary condition of existence of envelope _Yg)is represented in
the form

where
n{ t) "of(tg)=0 , (15)

nl t'= Lftnt. (16)

The derivation of the expression v{ t_'l is simplified while taking
considerations:

(lg}
(a) The relative velocity vector vf can be represented as

v{tg) _(s} (t) ds
= _L 1 rf +-dig t .

into account the following

(17)

Here, ..to_ is the skew-symmetric matrix represented as

0 -_o 3 w_0_ ]
/-l(f_) = w 3 0 i .

-- 0,)2 O) 1

(18)

Vector Of is represented by

$_f=o)llt+o)2df+to3n_= t -k, kg+ dsJ 4-7" (19)

(b) Consider that point N on surface _', is the point of the characteristic (the line of tangency of 2f, and
the generated surface _g). Certainly, the equation of meshing must be satisfied for point N.

The position vector Of N can be represented as

OfN =O,N -O,Of. (20)

Here, OtN is the position vector of point N that is drawn from the origin O, of S t to N; vector OtN is
represented as

where
O,N = u,e, = u,(sin y, cos O,i, + sin 7t sin Otj t + cos y,k,),

0

Ou[ (r,)

(21)

(22)
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is the unit vector of cone generatrix OtN.

Vector O_O r (Fig. 4) is represented in Sb as

O,O r = l,i_ , (23)

where l, = ]O,Ofl.

Vector OrN is represented in S r using the matrix equation

rlf t_ = u_Lfte t - ltLfbi b . (24)

(c) We now represent the equation of meshing as

ds

I_). tr } 0nfl'_ -vflC_t = _nl"i,_. [.Ol_)(u,Lf,e_ _ l_Lr, ib) ] + nf -d-[ = " (25)

(d) Further simplification of the equation of meshing is based on the following rule for operations with

skew-symmetric matrices [4]:

A'BI_A = C _ , (26)

where B I_l and C ¢_ designate skew-symmetric matrices, A' is the transpose matrix for A.

Considering that elements of B ¢_ are represented in terms of components of the vector

b=Ib_ b 2 b3l', (27)

we obtain that the elements of skew-symmetric matrix C _1 are represented in terms of the components

of vector c, where

[c_ c2 c3]_=-A'[b, b2 b3]'. (28)

Using the above considerations and eliminating ds/dt, the final expression of the equation of meshing

can be represented as

where

It) (tg)
nr vr =f(u,,O. Op)= ,.(_ • ,._(_1. , _ =• utnea e t -ttnt D t b + n,Lftt r 0,

A'_' : Ltf, g_If_'Lr, " B(_) : Ltrba',_'Leb ,

(29)

(30)

0 --a 3 a z ]
A I_) = a_ 0 -aj ,

-a 2 a t 0

(31)

al tcos _ sin Tt - k,,sin fl + ( kg + -_s ) COS /3 COST_

a, =- t sin /3 sin ,/_ + k, cos/3+ kg+ sin /3 cos"/, ,

a t cos yt - (kg + -_ ) sin T,

(32)

B.) =
I 0 -b 3 b 2 ]

b 3 0 -b t ,

-b 2 b I 0

(bll (-t cos/3 + k. sin/31

b_ =| tsin/3+k, cosl3 1. (33)
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The family of characteristics L. the instantaneous lines of tangency of _:, and _, is represented in S,
by the equations

r, = rt(ut. O,) , .f(tq, O,, Op) - O, (34)

where 0p is the parameter of the family of L_. Taking 0p = 01"_ (i- 1.2 ..... n), we obtain the current
characteristics on the surface v.

It is easy to verify that the equation of meshing between Y, and v is satisfied for the current point M

of the mean line L m on the ideal surface vp. This means that the characteristic L_ intersects g m at point
M. for which we can take 0, = 1) since v is a surface of revolution. In the case where )2, is a circular cone
(Fig. 4), we can take for point M that u, = Io,o,,1 = z,.

The approach discussed above for the derivation of equation of meshing can be easily extended for
application in the more general case where the tool surface is a general surface of revolution.

5. Determination of generated surface _'

The ground surface x" is generated as the envelope to the family of tool surfaces v; surface vg is
represented in Sp by the following equations:

r_fi(Up(Op), Op, ut, 0,) - L,,,r_t '' + r_pM)(up(Op), 0p), f(ut, Or, Op) : O, (35)

where f(u_,O,,Op)= 0 is the equation of meshing; r_f'_(u,,0,) is the equation of the tool surface X_

represented in S_, r_pM_(up(Op), Op) is the vector function that represents in Sp the mean line L,,,; the 3 x 3

matrix operator Lpt which transforms vectors in transition from S_ to Sp is represented as

where

I tp, dp, hi,,Lp r = tp,. d,,, rip,./" ,
[p: t'lp: HpzJ

o

O0p (r<PM_)
tp --

d fr _M

(36)

(37)

is the unit target to the mean line L,,,;

Orp ¢_rp
x

Ou p OOp

np= ± itrp dirt, "

iillp X

(38)

dp = hi, x tp. (39)

The sign chosen in (38) must provide the direction of tip towards the surface 'body'.

Equations (35) represent in Sp the generated surface _'g in three parametric form but with related
parameters. Parameter u, is linear in the equation of meshing when X_ is a cone, therefore this

parameter can be eliminated and the generated surface _'g can be represented in Sv as

r(g)
p = rg = r_(Op, 0I) . (40)

We recall that surfaces X_ and _'p have a common line L m where they are in tangency. Surface 2.' is
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in tangency with ._, along the instantaneous line Lg that passes through the current point M of line L m.

The tangents to Lg and L m lie in the plane that passes through M and is tangent to three surfaces (2fp, _'g
and 5_',) simultaneously.

6. Optimal approximation of the generated surface _'g to the ideal surface _p

The procedure of optimal approximation of ._'g to .,Vpis divided into the following stages: (i) design of
grid on 2"p, the net of points, where the deviations of _Ygfrom _p will be determined; (ii) determination

of the initial function /3<1)(0p) for the first iteration; angle /3 determines the orientation of the tool

surface _'_ with respect to £p (Figs. 1 and 3); (iii) determination of deviations of £g from _p with the

initial function /3<_)(0p); (iv) optimal minimization of deviations.

6. 1. Grid on surface 2£p

Figure 5(a) shows the grid on the surface _va,, the net of (n, m) points, where the deviations of _Yg
i,.j_ (Fig. 5(b)). The computation is based onfrom _p are considered. The position vector is OpQg.i = rp

the following procedure:
"J> are considered as known.(i) The desired components L_.j and R_.j of the position vector r o

(ii) Taking into account that

2 ....l,,j = z_ i) R,,j = [x_")(up, 0p)12 + [y_")(up, 0p)] 2 , (41)

(;t)

we will obtain the surface Zp parameters (u_ 'j), _O"'J)]p, for each grid point.

d?I,

/
/

Yl,

/
/ )

........
S I,

(b) xp

Fig. 5. Grid on surface vp.

Zp

L_n

Lgk _ ....

Fig. 6. Determination of maximal deviations along line L,_.
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6.2. Determination of initial ]'unction [3 I1)(Oo)

The determination of/311)(0v) is based on the following idea: the instantaneous direction of tb (the
tool generatrix) with respect to tangent t_ to the mean line L,, (Fig. 3) must provide the minimal value

..,k(r) . Here, k(,r) is the relative normal curvature determined as

k_,r'= k_,t' - k_.p' , (42)

where k(, ') and k(,pl are the normal curvatures of surfaces _,_t and 2Jp along t h. In the case of a

nondevelopable ruled surface _'p, vector t b can be directed along the asymptote of ._p.

The requirement that Ikl,_JI is minimal, enables us to determine the function /3 (')i0p) numerically.

Since we need the derivative dj3/d0p, for further computations the function /3(_)(0p) is represented
analytically as a polynomial function that must satisfy the numerical data obtained for the chosen points

of mean line L_.

6.3. Determination of deviations of _,'g from _p

We are able at this stage of the investigation to determine the equation of meshing between surfaces

27, and Eg, and surface _g as discussed in Sections 4 and 5. The computation of deviations of _g from _p
at the grid points is based on the following considerations:

(i) Surfaces ,Y.p and ._g are represented in the same coordinate system (Sp) by the following vector
functions:

rp(u o,Ov), r_(O_,O,). (43)

(i./_ ..j) 0 (i'i_ ofi,,_l and surface coordinates (Up ,00 ) are known for each point _p(ii) The position vector rp
the grid on surface v

(iii) Point _gO(;'/_ on surface 2' corrcsponds to point Q_.jl on surface _v The surface _g parameters

(0 I;;I 01,i'J_) can be determined by using the following two equations:
g ,

yg(i,/) (0gIi'j) ,_t_(t'JI)/ = _ p_/lp', (t.JI, 0pti'j) ) , Zg(i'J) (0glt'J) , _t_(i'J) ) = z. p[.Up" " (i'l) , Opti')) ) . (44)

"") The deviation of _g from _p at the grid(iv) Due to deviations of Zg from Zp, we have that Xlg_'il _ x v .
point 0 _j) is determined by the equation

_p

_i,i -- np(i'/) "[rg"(_,l) _ rp(i i)) , (45)

()(I.l 1_"/) is the unit normal to surface ._'p at the grid point ___ .where n o

The deviation 8_./can be positive or negative. We designate as positive such a deviation when 6,,_ > 0

(_'/) is directed into the 'body' of surface 2v' Positivc deviations of _Ygwith respect toconsidering that n v

_p provide that _Yg is inside of _'p and surface 2g is 'crowned'.

It is not excluded that initially the inequality 6_,/> 0 is not yet observed for all points of the grid.

Positive deviations 6,,/ can be providcd choosing the following options:
(1) choosing a surface of revolution with a circular arc in the axial section instead of a circular cone; a

proper radius of the circular arc must be determined.

(2) changing parameter l, = Io,o 1 (Figs. 3 and 4); this means that the grinding cone will be displaced

along t b with respect to the mean line L m.

(3) varying the initially chosen function /3_(0v).

6.4. Minimization of deviation 6_./

Consider that deviations _,,/ (i= 1 ..... n; j= 1..... m) of 25_ with respect to Zp have been
determined at the (n, m) grid points. The minimization of deviations can be obtained by corrections of
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the previously obtained function /3_)(0p). The correction of angle /3 is equivalent to the correction of
the angle that is formed by the principal directions on surfaces E, and 2,'g. The correction of angle/3 can

be achieved by turning of the tool about the common normal to surfaces v and ,?,'p at their

instantaneous point of tangency M k.

The minimization of deviations 6_.j is based on the following procedure:

Step 1. Consider the characteristic Lgk, the line of contact between surfaces YS, and _'g, that passes
through current point M k of mean line L m on surface Zp (Fig. 6). Determine the deviations 6k

_lll 121' ' _ kmaxbetween _ and _xv along line L_k and find the maximal deviations designated as _ max and
Jv_) and tv_ These pointsPoints of Lg k where the deviations arc maximal are designated as ,,k ,,k -

arc determined in regions I and II of surface Eg with line L m as the border. The simultaneous
consideration of maximal deviations in both regions enables us to minimize the deviations for

the whole surface Zg.
Note 1. The deviations of ,_, from ,_p along Lg k are simultaneously the deviations of 2'g from Z'p along

Lg k since Lg k is the line of tangency of }-'t and Zg.
Step 2. The minimization of deviations is accomplished by correction of angle /3k that is determined at

point M k (Fig. 6). The minimization of deviations is performed locally, for a piece k of surface

v with the characteristic L_k. The process of minimization is a computerized iterative process
based on the following considerations:

(i) The objective function is represented as

Fk = min(61_) , o_2_kmax d'-Okmax ) ,
(46)

with the constraint 3,,j/> O.
(ii) The variable of the objective function is ,5,/3k. Then, considering the angle

/3_2_ i'_+ A/3k (47)k =/3k

and using the equation of meshing with /3k, we can determine the new characteristic, the

piece of envelope ,_Cgk)and the new deviations. The applied iterations provide the required
objective function. The final correction of angle /3k, we designate as /3["P'_.

Note 2. The new contact hne LtgkI (determined with/3_-_) differs shghtly from the real contact hne since
• . "_ . • • 2 (2 •

the denvauve d/3]')/ds but not d/3[')/ds _s used for determining Ltgk). However, Lgk _ _Svery close to the
real contact line.

Step 3. The discussed procedure must be performed for the set of pieces of surfaces *g with the

characteristic Lg k for each surface piece.

We recall that the deviations for the whole surface must satisfy the inequality 6,.j >>-O. The procedure

of optimization is illustrated with a flowchart (Fig. 7).

7. Curvatures of the ground surface ._g

The direct determination of curvatures of -Ygby using surface Eg equations is a complicated problem.
The solution to this problem can be substantially simplified using the following approach proposed by

the authors: (i) the normal curvatures and surface torsions (geodesic torsions) of surfaces E r and Eg are

equal along line L m, respectively; (ii) the normal curvatures and surface torsions of surfaces E, and Eg

are equal along line Lg in terms of curvatures of Zv and Z,. However, only three of these equations are
independent (see below).

The term 'surface torsion' instead of 'geodesic torsion' has been proposed by Nutborne and Martin

[31.

Further derivations are based on the following equations:
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Fig. 7. Flowchart |or optimization.

= = 1 1 k - ) cos 2q .k, ktcos2q+kHsin'-q ,_(kl+ku)+:( _ klj (48)

t = 0.5(k,j - k_) sin 2q, (49)

where k I and k u are the surface principal curvatures, angle q is formed by unit vectors e, and e

measured counterclockwise from e, and e; e, is the principal direction with principal curvature k_; e is
the unit vector for the direction where the normal curvature is considered; t is the surface torsion for

the direction represented by e.

Equation (48) is known as the Eulcr equation. Equation (49) is known in differential gcomctry as

the Bonnet equation [2] and the Sophia Germain equation [3].

The determination of the principal curvatures and principal directions for .vg is based on the
following computational procedure:

Step 1. Determination of k_,_) and t _} for surface Xg at the direction determined by the tangent to L m.

The determination is based on (48) and (49) applied for surface X o. Recall that _-'pand Zg have
the same values of k. and t along the abovementioned direction.

Step 2. Determination of k_,,:_ and t_-'_. The designations k_,2_ and (_" indicate the normal curvature of

Xg and the surface torsion along the tangent to Lg. Recall that k_ :_ and t 12_ are the same for _-',

and 2fg along Lg. We determine kl_2_ and (2t for surface _', using (48) and (49), respectively.

Step 3. We consider at this stage of the computation that for surface X_ arc known k¢__1 and t ¢_i, k¢,:_
and t¢-'_, for two directions with tangents _-_ and z, that form the known angle g (Fig. 8). Our
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Swp 4.

1+ .+?>
Fig. 8. To determination of principal directions of generated surface v.

goal is to determine angle qt (or q2) for the principal direction el g_ and the principal curvatures

k_g_ and t_lg> (Fig. 8). Using (48) and (49), we can prove that kl+_ and l I'_ (i = 1,2) given forl "'ll

two directions represented by 71 and 7+ are related by

t t +t+

k,2 knl
- COt _t. (51))

Using (48) and (49). we can derive the following three equations for determination of q,, k_,g)

and k_]_:

t_ sin 2/x

tan 2q_ = t+ - t_ cos 2p. ' (51)

k<(_' = kC.'' - t, tan qt , (52)

]+',,+'= k'." + t, cot q,. (53)

Equation (51) provides two solutions for q_ (q(t 2) = qlt_>+ 91)°) and both are correct. We choose

the solution with the smaller value of q_.

8. Execution of motions on computer numerically controlled (CNC) machine: the 'Phoenix' machine

The process discussed above for generation of vg can be accomplished on a nmlti-degree-of-freedom
CNC machine. In the following discussions, we consider as an example of the CNC machine, the
'Phoenix' machine, designed by the Gleason Works (Fig. 9). This machine is provided with six degrees

of freedom for three rotational motions, and three translational motions. The translational motions are

performed in three mutually perpendicular directions. Two of the rotational motions are provided as

the rotation of the workpiece with surface Xg and the rotation that enables us to change the angle

between the axes of the workpiece with the to-be generated surface Xg and the tool with surface ).',. The
sixth rotational motion is provided as the rotation of the tool about its axis, and generally is not related

to the process for generation.

The 'workpiece' is the piece of metal that must be provided with the desired surface _g.

8. I. Coordinate systems applied for CNC

Coordinate systems S,(x,,y_,z,) and Sr(x_,,y_,,z+, ) are rigidly connected to the tool and the
workpiece, respectively (Fig. 10). Coordinate system S m performs translational motion along axis zt

with respect to the frame of 'Phoenix'.

Coordinate system S h performs translational motions with respect to Sm. Coordinate system S,

performs rotational motion with respect to S h about the zh-axis. Coordinate system S_. performs

rotational motion with respect to S m about the ym-aXis. Axes of the coordinate system S u are parallel to
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Fig. 9. Schematic of 'Phoenix" machine.
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Fig. 10. Coordinate systems used for "Phoenix' machine.

the respective axes of S¢; the location of origin O d with respect to O_ is determined with the parameter
(0 d)

x e = const. Coordinate system S e performs rotational motion with respect to Sd about the xd-axis.

8.2. Execution of motions

Execution of motions of the 'Phoenix' machine for the generation of conventional spiral bevel gears
and hypoid gears has been discussed by Goldrich [5]. The execution of motions for the method for

generation proposed in this paper is based on the following matrix equations (Figs. 2, 3, 4, 10):

L((,)_ [G)
,,t tu, 4,, 4,) = Le, (Op), (54)

where
M(C}, r6 r (°h) _(()h) ,mh))[ 0p, t#,O,

pl

0 0 1]' t<;) r=M,,, (0,,)[0 o o 1 , (55)

(56)
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and Ld_ and L,,lh are unitary matrices.

L_(;_ ,ot : Lp,(Ov)L_b([3(Ov))Lbt(Ot )" (57)

The superscript C indicates that the coordinate transformation is performed for the CNC machine.

The superscript G indicates the coordinate transformation when the generation of _'_ by the method
proposed in this paper is considered. Parameter 0* is constant and designates the chosen generatrix of

the tool surface with the unit vector tb (Figs. 2 and 4).

Using matrix equation (54), we obtain the functions _b(0v) and &(0p) that are required for execution
of rotational motions. Angle # represents the rotation angle of the tool and it can be chosen

deliberately since the tool surface _, is a surface of revolution.

Matrix equation (55) provides that the position vector OoO ¢ will be the same for both cases of

coordinate transformation. Using this equation, wc can determine the functions x,,, t%), )., tuv) and
z_")(Ov) for the cxccution of translational motions.

9. Numerical example: grinding of Archimedes' worm surface

The worm surface shown in Fig. 11 is a ruled undeveloped surface formed by the screw motion of the

straight line KN([KN[ = u f,). The screw motion is performed in coordinate system Sp (Fig. 11 (b)). The

to-be ground surface vp is represented in S o as

rp = u v cos cr cos Ovip + Up cos u sin Opjp + (pOp - up sin _r) kl, , (58)

where u v and 0o are the surface parameters.
The surface unit normal is

Np Orp Oro

n v- [No[ , N o=_x 00_" (59)

Thus,

ta)

(b)

/

_p

/J

%yw /
Fig. 11. Surface of Archimedes" worm.
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LpsinOp+UpSinacosO e ]1 -p cos 0_,+ u v sin a sin 0pJ (provided cos _ ¢ 0) . (60)-e - (,,: ,,,,

The design data are: number of threads N_ = 2; axial diametral pitch P,,_ = 8 in _, a = 20°; the radius

of the pitch cylinder is 1.125 in. The remaining design parameters are determined from the following

equations:

(i) The screw parameter is

Ni
0.125 in.

P - 2P,,,

(ii) The lead angle is

p 0.25
tan ap - - Ap = 12.5288 °

rp 1. 125 "

The mean line is determined as

(1) (1.25) ,).5C + re-PU '"
• - - 1.1263 in.rp(u,,, 0p) u,,, 2 cos a cos _

where I/P,,, and 1.25/P,,_ determine the addendum and dedcndum of the worm.

The worn] is ground by a cone with the apex angle Yt = 30°- and an outside diameter of 8 in.

The initial angle/3 ( _)= -88.0121 ° provides the coincidence of both generatrices of the cone and the

Archimedes' worm. The maximal deviation of the ground surface 2'_ from the ideal surface _.'), with the
above value of/3 _1) is 3 _m.

The optimal angle /3(''p') = -94.67_8 ° has been determined by the developed optimization method.

The deviations of the ground surface vg from E'p with the optimal /3 ¢''p,) arc positive and the maximal
deviation has been reduced to ().35 gm (Fig. 12).

×

E

Z

Fig. 12. Deviations ol the ground surface s from ideal surface '_ of Archimedes' worm,
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10. Conclusion

(1) A computerized method for generation (by grinding or cutting) of a surface Z'_ with optimal

approximation to the ideal surface )_,'phas been developed. The tool used for generation is provided
by a surface of a circular cone or a surface of revolution. The required motions of the tool with

respect to the to-be-generated surface are executed on a computerized multi-degree-of-freedom
machine.

(2) The theory of the proposed method for generation, the algorithm for execution of motions in the

process for generation, and thc procedure for optimal approximation of v to v have been
developed.

(3) An effective approach for the determination of curvatures of the generated surface Z'g has been
developed.

(4) A numerical example of generation of an Archimedes" worm has been presented.
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